硬組織再生材料 OCP (octacalcium phosphate) による破骨細胞の分化誘導機序

○ 望月文子1, 2, 高見正道1, 川和伸治2, 稲木治3, 中村雅1, 上條篤太郎1

1 昭和・歯・口腔生化, 2 昭和・歯・歯科補綴, 3 東北大学・歯・機能創薬
Mechanism of osteocalcification differentiation induced by octacalcium phosphate
A. MOCHIZUKI1, 2, M. TAKAMI1, T. KAWAWA2, O. SUZUKI3, M. NAKAMURA1, K. KAMIJO1

【緒言】
骨や歯のアパタイトは、ヒドロキシアパタイト (hydroxyapatite; HA) を基本型とする, Ca 欠損炭酸含有 HA である。HA の合成物やその焼結体であるセラミックスは生体親和性に優れており、歯科インプラント体の表面処理や人工骨の材料として利用されている。しかしこれらは生体の環境下で非常に安定した結晶相として存在するため、生体内で吸収を受ける速度が極めて速く、骨に置換され難い。そのため、生体内内で速やかに骨に置換される新たな吸収性生体材料の開発が望まれている。リン酸オクタカルシウム (octacalcium phosphate; OCP) は HA の前駆体質であると考えられ、実際に OCP がヒト骨芽細胞に存在することが証明されている。また、骨やエナメル質にも存在することが示唆されていることから、OCP は生体内内でも HA 前駆体として重要な硬組織構成分である可能性が高い。鈴木らは、OCP の生体親和性を検討するため、ラットの頭蓋骨に自然修復できない大きな骨欠損を作り、そこに HA、または OCP を充填し骨修復の経過を観察した。その結果、HA はほとんど吸収を受けなかったのに対し、OCP は速やかに吸収を受けて骨に置換され、HA よりも短期間に欠損部の修復された。これらの結果は、OCP の新規吸収性骨組織再生材料としての可能性を示唆している。生体内における OCP の皮膚と骨の置換には、吸収を担う破骨細胞と骨形成を担う骨芽細胞が関与すると考えられているが、OCP もこれらの細胞の分化、機能発現に及ぼす影響は不明である。そこで我々は、HA と OCP で骨芽細胞と破骨細胞を共存培養し、OCP がこれらの細胞の分化に与える影響とそのメカニズムを検討した。

【方法】① 骨芽細胞分化および破骨細胞分化: 細胞培養プレートの表面を HA または OCP でコーティングし、その上でマウスの骨芽細胞と骨髄細胞を共存状態で培養し、骨芽細胞と破骨細胞の分化はそれぞれのマーカーである ALP（アルカリ性ホスファターゼ）と TRAP（酒石酸耐性酸性ホスファターゼ）の活性を検出することにより評価した。② 越子発現: OCP で培養した骨芽細胞に RNA を調整し、マイクロアレイ (GeneChip; Affymetrix 社)、および RT-PCR 法により解析した。

【結果】① 骨芽細胞の分化: 骨芽細胞の分化誘導因子である BMP-2 を共存培養系に添加したところ、骨芽細胞の分化マーカーである ALP の発現上昇が認められた。しかしこの発現レベルに、OCP と HA の間で有意差は認められなかった。これは、BMP-2 が OCP および HA 上で骨芽細胞分化を誘導し、骨形成を促進する可能性を示唆する。② 破骨細胞分化: 一般に破骨細胞分化は活性型ビタミン D3 などの骨吸収因子によって誘導されることが知られているが、OCP 上で共存培養を行ったところ、骨吸収因子の非存在下でも多核の TRAP 阳性細胞が形成された。さらに BMP-2 の増加により発現遺伝子を解析したところ、破骨細胞のマーカー遺伝子である Cathepsin K や OSCAR の発現が認められたことから、形成された TRAP 阳性細胞は破骨細胞であると考えられた。それに対して HA 上の共存培養では、骨吸収因子の非存在下で破骨細胞は全く形成されなかった。③ OCP 上の共存培養系に BMP-2 を添加すると、破骨細胞形成が濃度依存的に促進された。これに対して、HA 上では BMP-2 を添加しても破骨細胞形成は誘導されなかった。④ OCP 上で培養した骨芽細胞における破骨細胞分化関連遺伝子の発現を解析したところ、破骨細胞分化誘導因子として知られる TRANCE (RANKL/ODF) の著明な発現上昇が認められた。一方、HA 上で培養した骨芽細胞では TRANCE の発現上昇は認められなかった。

【考察】
生体内で OCP が HA よりも吸収を受けやすいのは、OCP が破骨細胞の形成を骨芽細胞を介して誘導するためであると推測される。OCP と HA 間の破骨細胞誘導活性の差はそれぞれの骨芽細胞における TRANCE の発現誘導能に起因すると考えられる。また、BMP-2 は骨芽細胞の分化だけでなく、破骨細胞の分化も促進するため、BMP-2 は OCP の骨への置換を促進する重要な因子であると推察される。