オイル/塩化ニッケル水溶液）を比較検討した。また、Spec-IR法を使用したときの脂肪酸の理論式から、k-space上における脂肪酸の信号強度変化をシミュレーションした。使用装置は、GE社製Signa CV/i 1.5Tである。

【結果】フィラメント法における検討では、Spec-IR pulseを最初の1回だけ印加した場合においても、脂肪抑制効果が認められた。Spec-IR pulseの印加間隔が100msecほど脂肪抑制効果が低下する傾向を示したが、25回のTRに1回の印加間隔以上は大きな差は認めなかった。Fast SPGRのflp angle (FA)が10度になると脂肪抑制効果が低下した。

【考察】eliptic centricの場合、k-spaceの中心から徐々に周辺部分にデータを追加するため、低周波波で多くのSpec-IR pulseが印加されるほど脂肪抑制効果が大きくなる。Spec-IR pulseの印加間隔がある一定以上になると、低周波波でのSpec-IR pulseの印加が少なくなり脂肪抑制効果に差が生じると考えられる。eliptic centricにおける脂肪抑制法は、最初にSpec-IR pulseの印加間隔を短くし、徐々に印加間隔を長くする方式が望ましいと考えられる。

235 脂肪抑制パルスを加えたeliptic centric view order法の検討

NTT東日本篠原病院・放射線部 奥見幸秋、今井宣宏、攪 孝次

【方法】1. 各パルスのパラメータを変更し、脂肪と血液の各シーケンス別に、k-spaceの加えるパルス数を10回ずつ増やし、脂肪抑制効果を検討した。

2. ファントムを用いて、脂肪抑制効果を評価した。

【考察】eliptic centric view order法において、脂肪抑制効果を向上させるためには、パルス数を増やすことが重要である。パルス数の増加により、脂肪抑制効果が向上する。しかし、パルス数の増加により、パルス間隔が短くなるため、脂肪抑制効果が低下する。パルス間隔を長くすると、パルス数の増加によるパルス間隔の短縮が抑えられる。したがって、パルス数を増やし、パルス間隔を長くする方法が望ましいと考えられる。

2368 頸部固定台による吸収がSPECT raw dataに与える影響

[2] 2368 頸部固定台による吸収がSPECT raw dataに与える影響

【目的】頸部固定台がSPECT raw dataに与える影響を評価するため、頸部固定台の位置を変更し、SPECT raw dataの吸収を測定した。

【方法】1. 頸部固定台を変更し、SPECT raw dataの吸収を測定した。

2. 吸収の測定値を比較した。

【結果】頸部固定台の位置を変更すると、SPECT raw dataの吸収が変化し、測定値が増加した。しかし、吸収が増加する傾向は見られなかった。

【考察】頸部固定台の位置を変更すると、SPECT raw dataの吸収が変化する可能性がある。そのため、頸部固定台の位置を変更する際には、SPECT raw dataの吸収を考慮する必要があります。

237 变数無無無いarray spatial sensitivity encoding techniqueを用いた2DMDRSAにおける基礎的検討

【目的】2DMDRSA法における基礎的検討を実施した。

【方法】1. 2DMDRSA法における基礎的検討を行い、その結果に基づき、2DMDRSA法を改良した。

2. 改良後の2DMDRSA法を用いて、症例の観察を行った。

【結果】改良後の2DMDRSA法は、症例の観察において、従来の2DMDRSA法に比べ、より高い精度で結果を出力することができる。