ルーメン微生物混合系における Selenomonas ruminantium subsp. lactilytica の増加による乳酸利用の増加とメタン生成の低減
○浅沼成人・吉井貴宏・日野常男（名大農）

【目的】ルーメン内では、プロピオン酸生成とメタン生成の間には拮抗関係がある。乳酸は主にプロピオン酸生成に用いられるので、乳酸利用が増加するため、メタン生成は抑制されると考えられる。そこで、ルーメン内の乳酸利用菌 Selenomonas ruminantium subsp. lactilytica および Megasphaera elsdenii の菌数増加が乳酸利用やメタン生成に及ぼす影響について調べた。

【方法】ルーメン微生物混合系に S. lactilytica または M. elsdenii を添加し、濃厚飼料粉末を基質として培養し、ガスと有機酸の生成量を調べた。

【結果】微生物混合系に S. lactilytica を添加することにより、乳酸の生成量が低減し、メタン生成量も低減した。一方、M. elsdenii を添加した場合には、乳酸生成量は低下したが、メタン生成量は増加した。乳酸を基質として有機酸の単栄養した場合、M. elsdenii だけでは H2 を生成した。それ故、ルーメン内における S. lactilytica の存在数の増加は、乳酸の蓄積を防ぐと共に、メタン生成を低減させると考えられた。

水素添加能の高い消化管細菌の検索とその特性
○二宮紀子・福田真嗣・浅沼成人・日野常男（名大農）

【目的】反復動物が摂取した多不飽和脂肪酸（PUFA）はルーメン微生物により水素添加（Hアドバイ）されるため、牛肉・牛乳中の PUFA 含量は低く、従って、水素が減少すれば牛肉・牛乳中の PUFA 含量が増加すると考えられる。また近年、水添加管路の利用が増加していることから、ルーメン微生物の RU ニール酸（CLA）は種々の生物活性を有する微生物として注目されている。そこで本研究では、動物の異常から水添加能の高い菌検査を行った。

【方法】様々な動物の異常から水添加能を有する菌を分離し、その反応特性を調べた。さらに、高濃度のリノール酸（LA）の存在下で各菌を培養し、LA の増殖阻害作用に対する耐性について調べた。

【結果】種々の動物の異常から水添加能の高い菌をいくつか分離したが、その水添加反応の特性は多様で、最も水添加能が高い菌株がややガルバクから分離され Butyribrio fibrisolvens と同定された。この菌株は、これまでに知られている菌株よりも水添加能と CLA 生能が高かった。また、種々の菌株の LA 耐性と水添加能の関係については関係関係が認められた。

Streptococcus bovisにおける H⁺-ATPase遺伝子の翻訳調節機構の解析
○大河原智・浅沼成人・日野常男（明大農）

【目的】低PH耐性の一つの機構として、H⁺-ATPase合成が重要であることをこれまでに示した。そこで、本研究では、低PH耐性ルーメン菌 Streptococcus bovis の H⁺-ATPase 遺伝子（atp）の発現調節機構について調べた。

【方法】Primer extension 法により、S. bovis の H⁺-ATPase オペロンの転写開始部位を決定した。続いて、DNase I footprint 法によりタンパク結合部位の塩基配列を決定した。

【結果】オペロンの転写開始部位は一ヶ所で、PH の違いによる変化はなかった。この結果は、ノーザンプロット解析から得られた結果と一致した。転写開始部位の上流には、-10 および-35 のプロモーター配列が見られ、また、-35 配列周辺にタンパク結合部位が確認された。その部位に結合するタンパクを、カラムクロマト法によって精製した。In vitro transcription 解析の結果、このタンパクの存在により atp-mRNA ができることを示した。従って、このタンパクは転写調節タンパクであると考えられた。

Butyribrio fibrisolvens の水素添加に関与する酵素の特性と合成の制御
○福田真嗣・二宮紀子・浅沼成人・日野常男（名大農）

【目的】B. fibrisolvens (Bf) は水素添加水活度を有する代表的な菌であり、この菌の水活度の制御により、牛肉・牛乳中の多不飽和脂肪酸や共役リノール酸（CLA）を増加させ得ると考えられる。そこで本研究では、リノール酸（LA）の水添加と CLA 生合成に関与する 2 つの酵素の特性とその合成について解析した。

【方法】Bf 4 酵母を供試し、リノール酸イソメラーゼ (LA-I) 活性、CLA モノテラーゼ (CLA-R) 活性を測定した。また、基質の存否や増殖段階の違いが酵素活性に及ぼす影響や、各酵素の存在部位についても検討した。

【結果】どちらの酵素も正常 pH で中性付近であり、また、発酵系で居た。LA-I 活性はその基質である LA の影響を受けなかったが、生成物である CLA によって増強した。また、対数増殖期よりも静止期の方が活性が高くなる傾向であった。一方、CLA-R 活性は LA と CLA のどちらによっても増加したが、基質である CLA の影響の方が大きく、