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SUMMARY

Genome information, which is three-dimensionally
organized within cells as chromatin, is searched
and read by various proteins for diverse cell func-
tions. Although how the protein factors find their
targets remains unclear, the dynamic and flexible
nature of chromatin is likely crucial. Using a
combined approach of fluorescence correlation
spectroscopy, single-nucleosome imaging, and
Monte Carlo computer simulations, we demonstrate
local chromatin dynamics in living mammalian cells.
We show that similar to interphase chromatin, dense
mitotic chromosomes also have considerable chro-
matin accessibility. For both interphase and mitotic
chromatin, we observed local fluctuation of indi-
vidual nucleosomes (�50 nm movement/30 ms),
which is caused by confined Brownian motion. Inhi-
bition of these local dynamics by crosslinking im-
paired accessibility in the dense chromatin regions.
Our findings show that local nucleosome dynamics
drive chromatin accessibility. We propose that this
local nucleosome fluctuation is the basis for scan-
ning genome information.

INTRODUCTION

The long string of genomic DNAmust be organized three dimen-

sionally in nuclei or mitotic chromosomes so as to utilize genome

information during cellular proliferation, differentiation, and
Cell Re
development. DNA is wrapped around histones, forming a nucle-

osome structure (Olins and Olins, 1974; Woodcock et al., 1976;

Kornberg, 1974). The nucleosome is thought to be folded into a

30 nm chromatin fiber (Finch and Klug, 1976; Woodcock et al.,

1984) and further regular higher-order structures (Sedat and

Manuelidis, 1978; Belmont et al., 1987). However, recent anal-

yses, including our cryo-electron microscopy (cryo-EM) and

synchrotron X-ray scattering studies, showed almost no visible

30 nmchromatin fibers or other regular structures inmitotic chro-

mosomes (McDowall et al., 1986; Eltsov et al., 2008; Maeshima

et al., 2010a; Nishino et al., 2012), which suggests that chromo-

somes consist of irregular folding of nucleosome fibers, with

a fractal organization, i.e., a polymer melt-like structure. More

recently, the absence of 30 nm chromatin fibers in the majority

of active interphase cells was also suggested (Maeshima et al.,

2010a; Fussner et al., 2011a, 2011b; Joti et al., 2012).

The concept of a polymer melt-like structure implies that the

nucleosome fibers may be constantly moving and rearranging

at the local level, actions that are likely to be crucial for various

genome functions (Dubochet et al., 1986; McDowall et al.,

1986; Eltsov et al., 2008; Maeshima et al., 2010a; Nishino

et al., 2012; Joti et al., 2012). Although many studies have exam-

ined chromatin dynamics on relatively long timescales, from

seconds to hours (Abney et al., 1997; Vazquez et al., 2001;

Heun et al., 2001; Zink et al., 2003; Soutoglou and Misteli,

2007; Chuang and Belmont, 2007; Bancaud et al., 2009; Cremer

et al., 2012; McNally, 2011), much less is known about local

nucleosome dynamics on a shorter timescale, frommilliseconds

to seconds. Here, we analyzed the local dynamic properties of

nucleosome fibers in living mammalian cells.

Because studying the chromatin environment in living cells

using traditional fluorescence and EM is difficult, we utilized
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Figure 1. FCS Measurements in Living Cells

(A) Schematic diagram of FCS measurement. FCS detects the in-out motion

of EGFP molecules (green spheres) in an �0.1 femtoliter volume (the

blue cylinder region) as fluctuations in fluorescence intensity (shown as

a graph). t, time.

(B) DM cell lines that express the monomeric, trimeric, and pentameric forms

of EGFP. First row shows EGFP signal; second row, H2B-mRFP1; third row,

merged images. Note that the EGFP monomer and trimer are uniformly

distributed in the cytoplasm and nuclei. The pentamer signal in the nuclei

is also uniform, although its signal is weaker than that in the cytoplasm,

probably because the pentamers cannot pass through the nuclear pores.

Scale bars, 10 mm.

(C) Identification of FCS-measured regions. After FCS, the chromatin regions

(H2B-mRFP1, red) are photobleached, and the actual measured regions (white

circles) can be identified in the interphase chromatin (upper right) and mitotic

chromosomes (lower right).

See also Figure S1.
a combined approach of fluorescence correlation spectroscopy

(FCS), single-molecule imaging, and Monte Carlo computer

simulations. FCS detects fluorescence intensity fluctuations

caused by Brownian motion of fluorescence probe molecules

in a small detection volume generated by confocal microscopic

illumination (Rigler and Elson, 2001; Mütze et al., 2011). Using

this approach, we can indirectly examine the cellular environ-

ment in living cells. Single-molecule imaging can directly reveal

the dynamics of specific molecules (Harms et al., 2001; Schütz

et al., 2000; Sako et al., 2000; for single-particle analysis, see

Gross and Webb, 1986; Sheetz et al., 1989; Kues et al., 2001;
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Marshall et al., 1997). Computer simulation enables us to predict

the behavior of molecules under conditions that are either

difficult to observe directly by microscopic strategies or difficult

to generate experimentally. Many simulations have been per-

formed for polymers, DNA, nucleosomes, and chromatin,

contributing to the understanding of chromatin structure and

function (Schlick et al., 2012; Peri�si�c et al., 2010; Fritsch

and Langowski, 2010, 2011; Diesinger et al., 2010; Vologodskii

and Rybenkov, 2009; Korolev et al., 2012; Becker and Everaers,

2009). To reconstruct the chromatin environment in living

cells, we employed a type of Metropolis Monte Carlo simulation

that solves particle diffusion problems (Metropolis et al., 1953;

Morelli and ten Wolde, 2008).

In the present study using our combined approach, we uncov-

ered the local dynamics of individual nucleosomes in living

mammalian cells. Our results show that nucleosome fluctuation

drives chromatin accessibility, which is advantageous for many

‘‘target searching’’ biological processes, including transcription,

DNA repair, replication, and recombination.

RESULTS

FCS Measurements of Interphase Chromatin
and Mitotic Chromosomes in Living Cells
To characterize chromatin accessibility in living cells, we first

employed FCS using free enhanced green fluorescent proteins

(EGFPs). Through time correlation analyses of the fluorescence

fluctuations (Figure 1A), we obtained a diffusion coefficient (D)

for free EGFP, which shows how far the molecules can move

in a particular period of time (see Experimental Procedures;

also see Figures S1 and S2). D provides useful information on

their environment: a crowded environment decreases D.

However, we experienced two problems with FCS measure-

ments, particularly in the mitotic chromosome environment.

First, the diameter of the FCS detection regions (which are

�0.4 mm in diameter 3 �1–2 mm in height) is larger than the

diameter of a typical mammalian chromosome (�0.7 mm; Alberts

et al., 2008), which makes specific measurements inside chro-

mosomes difficult. Second, because chromosomes move

dynamically and a single FCS measurement takes more than

several seconds, we have to confirm that the measured region

is actually inside the dynamic chromosomes throughout the

recording period. To resolve the first problem, we used an Indian

Muntjac cell line (DM cells) (Manders et al., 1999). DM cells have

giant chromosomes with diameters that are much larger (�2 mm)

than that of the FCS detection region. For the second problem,

histone H2B-mRFP1 was coexpressed as a marker of chromatin

regions (Pack et al., 2006; Dross et al., 2009; Bancaud et al.,

2009) (Figures 1B, S1A, and S1B). Upon photobleaching of im-

mobilized H2B-mRFP1 after FCS, the actual measured regions

could be identified by confocal imaging, thus avoiding off-target

measurements (Figures 1C, S1C, and S1D).

To establish DM cell lines that stably express H2B-mRFP1

and EGFP, we introduced a single-copy construct into the DM

cell genome by site-specific recombination (Figure S1A). To

examine the effect of the size of molecules on diffusion, we

also generated DM cell lines that express oligomeric EGFPs:

EGFP trimers and pentamers with molecular masses of 90 and
hors



Figure 2. Mean D Values of EGFP Monomers, Trimers, and Pen-

tamers in Living Cells

(A–C) EGF monomer (A), trimer (B), and pentamer (C) in solution (first row)

(Pack et al., 2006) and cytoplasm (second row), interphase chromatin (third

row), and mitotic chromosomes (fourth row) are shown. For details regarding

the calculation ofD, see Experimental Procedures. Themean value and SD are

shown on the right (n = 5 cells).

(D) Slower diffusion of EGFP monomers in apoptotic chromatin. Upper view

shows that the chromatin of apoptotic cells is condensed with a strong

H2B-mRFP1 signal. After the FCS measurement, the H2B-mRFP1 signal of

the measured region was photobleached (indicated by arrow). Lower

view presents mean D values of EGFP monomers in the apoptotic cell cyto-

plasm and chromatin. Note that the value for the cytoplasm is similar to that

of the cytoplasm of normal cells. The D value in the apoptotic chromatin was

3-fold lower than mitotic chromosomes, whereas the cytoplasm of interphase,

mitotic, and apoptotic cells did not show such low Ds. Thus, although both

are highly condensed, the compaction profiles of mitotic and apoptotic

chromatin appear to be distinct, suggesting that the nucleosomes in ‘‘dying

cells’’ were aggregated and their local movement diminished, different from

those in living cells.

See also Figure S2.
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150 kDa, respectively (Figures 1B and S1B; for details of the

construction of the oligomeric EGFPs, see Extended Experi-

mental Procedures). The oligomeric EGFPs with different

molecular masses could be used as molecular rulers for quanti-

fying protein mobility (Pack et al., 2006; Dross et al., 2009; Ban-

caud et al., 2009). Their proper expression and localization were

confirmed by microscopic imaging (Figure 1B) and western

blotting (Figure S1B).

Interphase Chromatin and Mitotic Chromosomes Have
Considerable Chromatin Accessibility
We then measured the movements of the EGFP monomer,

trimer, and pentamer molecules in the interphase chromatin

and mitotic chromosomes (Figure 1A; Experimental Proce-

dures). Before and after the FCS measurements, cell images

were acquired to verify the actual measured regions by photo-

bleaching of H2B-mRFP1 (Figures S1C and S1D). Based on

the measured fluorescence correlation functions, which were

well fitted by the one-component model, we calculated the Ds

of EGFP monomer, trimer, and pentamer molecules (Figure S2;

Experimental Procedures). Figure 2A shows the Ds of monomer

EGFP molecules in the cytoplasm, interphase chromatin, and

mitotic chromosomes. The Ds obtained for the cytoplasm and

interphase chromatin are similar to those in previous reports

(Pack et al., 2006; Dross et al., 2009; Bancaud et al., 2009). In

the mitotic chromosome, protein mobility or accessibility was

detected, as implied by other studies (Chen et al., 2005; Hinde

et al., 2011; Görisch et al., 2005). The D in the mitotic chromo-

somes was only 30% lower than that in the interphase chro-

matin. Similar profiles for the EGFP trimers and pentamers

were observed (Figures 2B and 2C). Our results show that similar

to interphase chromatin, mitotic chromosomes also have

considerable chromatin accessibility. However, we found that

EGFP mobility was severely impaired in apoptotic chromatin,

which is highly condensed (Figure 2D), suggesting that the

comparable Ds in interphase chromatin and mitotic chromo-

somes were not due to our FCS measurement system (see

also Figure 2D legend).

Nucleosome Concentrations within Interphase Nuclei
and Mitotic Chromosomes in DM cells
We did not detect large differences in chromatin accessibility

between interphase chromatin and mitotic chromosomes.

Therefore, to more directly evaluate their chromatin environ-

ment, we examined the nucleosome concentrations in inter-

phase nuclei and mitotic chromosomes. Nuclear and mitotic

chromosome volumes in DM cells were measured from their

three-dimensional (3D) image stacks (Figures 3A and 3B). Their

nucleosome concentrations were calculated based on the

measured volumes and the known genome size of Indian

Muntjac cells (DM cells) (2.1 pg/haploid genome) (Johnston

et al., 1982). The nucleosome concentration in mitotic chromo-

somes (�0.5mM)was 5-fold higher than that in interphase nuclei

(�0.1 mM) (Figure 3C), which is consistent with previous reports

(for fluorescence-based measurements, see Weidemann et al.,

2003; for EM-based measurements, see Daban, 2003), although

one must consider that nucleosomes are not evenly distributed

within interphase nuclei.
ports 2, 1645–1656, December 27, 2012 ª2012 The Authors 1647



Figure 3. Measurements of Nucleosome Concentrations in Inter-

phase Nuclei and Mitotic Chromosomes

(A) Chromatin regions were extracted and segmented from the 3D image

stacks through the use of an extraction and segmentation procedure (left two

images; for details, see Extended Experimental Procedures). The nuclear and

chromosome volumes were calculated from the segmented areas. Note that

because the chromosome clusters, especially in anaphase, have complicated

shapes, the chromosome volumes may have been underestimated.

(B and C) The obtained volumes (B) and concentrations (C) are shown as

bar graphs (left), and their mean values and SD are shown on the right

(n = 4 cells).
In Silico Reconstruction of the Chromatin Environment
Predicts that Nucleosome Fluctuation Facilitates
Protein Mobility
Based on the physical parameters obtained above, we recon-

structed the chromatin environment in silico using theMetropolis

Monte Carlo method (Metropolis et al., 1953; Morelli and ten

Wolde, 2008) to simulate EGFP behavior under various chro-

matin conditions. In the simulation, EGFP pentamers and the

nucleosomes were represented as diffusing spherical particles

of 13 nm hydrodynamic diameter (termed 13 nm spheres or

green spheres in Figure 4A) and immobile spherical particles of

10 nm hydrodynamic diameter (termed 10 nm spheres or red

spheres in Figure 4A), respectively. The hydrodynamic diameters

of the particles were determined based on the Stokes-Einstein

relation (for details, see Experimental Procedures). The 10 nm

spheres, which mimic nucleosomes, were placed in the simula-

tion volume at a concentration of 0.1 or 0.5 mM (red spheres in

Figure 4A). The 0.5 mM condition corresponds to mitotic chro-

mosomes and likely corresponds to interphase heterochromatin
1648 Cell Reports 2, 1645–1656, December 27, 2012 ª2012 The Aut
(Weidemann et al., 2003; Daban, 2003; for review, see Wachs-

muth et al., 2008). In the environment with 0.1 mM of the

10 nm spheres (red spheres) under a fixed condition, the

13 nm spheres (green spheres) moved around freely (Figures

4B, left, and 4E; Movie S1). However, with the 0.5 mM fixed

10 nm spheres, which corresponds to the dense heterochro-

matin or chromosome environment, the 13 nm spheres could

not move far from their starting position and were trapped in

a confined space (Figures 4B, right, and 4E; Movie S2). The

mean-square displacement (MSD) and Ds of the 13 nm

spheres under this condition are plotted in Figure S3. This

simulation suggests that EGFP pentamers in fixed chromatin

environments cannot move around freely. This is inconsistent

with the FCSmeasurements in the living chromatin environment,

in which apparently free diffusion of EGFP pentamers was

observed.

To determine the conditions that better recapitulate the obser-

vations in vivo, we next performed the simulation with mobile

nucleosomes. In this model, the 10 nm spheres (nucleosomes)

aremobile, but their movements are restricted to a certain range,

resembling ‘‘a dog on a leash’’ situation. In this dynamic environ-

ment, apparently free diffusion of the 13 nm spheres (green

spheres) was observed with 0.5 mM of the 10 nm spheres (red

spheres) (Figures 4C and 4E; Movie S3). The MSD and Ds of

the 13 nm spheres under this condition are plotted in Figure S3.

This result suggests that in a dynamic chromatin environment,

EGFP pentamers can move freely, even with 0.5 mM nucleo-

somes. In addition to the 13 nm spheres, we also showed that

21 nm spheres, which are twice as large as the nucleosome,

can move freely in 0.5 mM of fluctuating 10 nm spheres (Figures

S4A–S4C; Discussion).

Strikingly, a maximum displacement (or fluctuation) of 10–

20 nm for the 10 nm spheres was sufficient for the 13 nm spheres

to diffuse freely in the crowded environment (Figure 4D). This

observation suggests that local fluctuation (10–20 nm) of nucle-

osomes drastically increases protein mobility in a compact

chromatin environment. Furthermore, in the relatively low con-

centration range of 0.1–0.4 mM of 10 nm spheres, local fluctua-

tion facilitated movement of the 13 nm spheres (Figure 4E),

which agrees with the lattice simulations of the polymer chain

(Wedemeier et al., 2009b; Fritsch and Langowski, 2011),

whereas fluctuation of the 10 nm spheres at a higher concentra-

tion had a much greater effect (Figure 4E).

In our Monte Carlo simulation, we assumed that EGFP pen-

tamer molecules were globular shapes with a hydrodynamic

diameter of 13 nm. When we conducted additional calculations

assuming the EGFP pentamer as a rod-shaped object, consis-

tent results were obtained (Figures S4D–S4F).

Single-Nucleosome Imaging in Living Cells
An obvious important question is whether the nucleosome

fluctuations predicted by the simulation occur in living cells.

Therefore, we performed single-particle imaging of nucleo-

somes in living cells. Fluorescently labeling only a small number

of the nucleosomes among the �3 3 107 in a single nucleus

was technically challenging. We fused photoactivatable (PA)-

GFP with histone H4 (Lippincott-Schwartz and Patterson,

2009; Wiesmeijer et al., 2008), which is a stable core histone
hors



Figure 4. Reconstructions of the Living

Chromatin Environment Using Monte Carlo

Computer Simulations

(A) The nucleosome is represented as a 10 nm

sphere (red sphere) and fixed in a restricted space

at a concentration of 0.1mM (left image) or 0.5mM

(right image, corresponding to mitotic chromatin

or interphase heterochromatin), randomly but in a

manner that avoids any overlap. The EGFP pen-

tamer is represented as a 13 nm sphere (green

sphere) (Pack et al., 2006;Wachsmuth et al., 2008)

(also see Experimental Procedures).

(B) The 13 nm spheres (EGFP pentamers) are put

in random motion, avoiding the 10 nm spheres

(nucleosomes) at the obtained D (7.0 mm2/s). With

0.1 mM of fixed 10 nm spheres, the 13 nm spheres

move around freely (left image). However, with

0.5 mM of fixed 10 nm spheres, the 13 nm spheres

are unable to move far from their starting points

(right image). The three different temporal trajec-

tories of the 13 nm spheres for 0.2 ms are indi-

cated in blue, green, and red.

(C) In the environment with fluctuation of 0.5mMof

the 10 nm spheres, the 13 nm spheres can move

around freely, in contrast to the case of fixed

10 nm spheres (right in B). Each 10 nm sphere

behaves like ‘‘a dog on a leash.’’ The leash length

is 20 nm.

(D) Terminal Ds of the 13 nm spheres with 0.5 mM

of 10 nm spheres and various ‘‘dog leash’’ lengths

(maximum displacement of 10 nm spheres). Note

that a 10–20 nm displacement (movement) of the

10 nm spheres allows 13 nm spheres to diffuse

quite freely.

(E) Terminal Ds of 13 nm spheres with various

10 nm spheres concentrations, which are fixed

(red) or fluctuating (green). Note that, in the rela-

tively low concentration range of 0.1–0.4 mM of

10 nm spheres, local fluctuation facilitated move-

ment of the 13 nm spheres. The ‘‘dog leash’’

(maximum 10 nm sphere displacement [move-

ment]) length is 20 nm.

See also Figures S3 and S4 and Movies S1, S2,

and S3.
component (for analyses using Histone-GFP, see Kimura and

Cook, 2001), and expressed the fusion protein in DM cells at

a very low level. PA-GFP-H4 expression and photoactivation in

stable DM cells were verified using western blotting (Figure S5A)

and 405 nm laser stimulation (Figure S5B), respectively.

Biochemical fractionation of purified bulk nucleosomes con-

firmed that ectopically expressed PA-GFP-H4 behaved in a

manner similar to endogenous H4, and the majority of PA-

GFP-H4 was properly incorporated into the nucleosome struc-

ture (Figure S5C).

For single-nucleosome imaging, we used highly inclined and

laminated optical sheet (HILO) microscopy (Tokunaga et al.,

2008). Unexpectedly, a very low number of PA-GFP-H4 in the

stable DM cells were spontaneously activated without laser

activation and were observed as dots (Figure 5A). Single-step

photobleaching of these dots (Figure 5B) revealed that each

dot represented a single PA-GFP-H4 molecule in a single nucle-
Cell Re
osome, allowing one to observe the movement of individual

nucleosomes.

Local Nucleosome Fluctuation in Living Cells
With this imaging system, we recorded nucleosome signals in

the interphase chromatin and mitotic chromosomes at a video

rate of �30 ms/frame, as a movie. The signal particles in each

image frame were fitted to an assumed Gaussian point spread

function to determine the precise center of signals with a higher

resolution below the diffraction limit (Figure 5A) (Lippincott-

Schwartz and Patterson, 2009). After the position of the signal

particles was obtained in every frame of the movie, its trajectory

was analyzed as the displacement (movement) (Figures 5C and

5D). Because we aimed to examine local nucleosome fluctua-

tions and the PA-GFP-H4s were very rapidly photobleached,

we were able to analyze the behaviors of the nucleosomes

over short time periods; from 0 to 0.18 s (Figures 5C, 5D, and 6).
ports 2, 1645–1656, December 27, 2012 ª2012 The Authors 1649



Figure 5. Single-Nucleosome Analysis

(A) Images of DM cell nuclei that express PA-GFP-

H4. The bright dots are shown using the HILO

microscopy system (Tokunaga et al., 2008) (for

details, see Experimental Procedures).

(B) Single-step photobleaching of PA-GFP-H4

dots. The vertical axis represents the fluorescence

intensity of each tracked PA-GFP-H4 dot. The

horizontal axis is the tracking time series (photo-

bleaching point is set as time 0; n = 100). Due to

the clear single-step photobleaching profile of the

PA-GFP-H4 dots, each dot in (A) shows a single

PA-GFP-H4 molecule in a single nucleosome.

(C and D) Displacement (movement) distributions

of single nucleosomes in interphase chromatin

(C) (n = 8 cells) and mitotic chromosomes (D)

(n = 12 cells) for 30 ms (left), 60 ms (center), and

90 ms (right).

(E) Displacement distributions of single fluores-

cence beads on a glass surface (n = 100).

(F) Crosslinked nucleosomes in glutaraldehyde-

fixed DM cells (n = 8 cells). The glutaraldehyde-

fixed cells produced strong autofluorescence,

preventing determination of the signal centers.

Note that their displacements are significantly less

than in living cells (C) and (D).

(G and H) Centroid movements for many dots in

the same time frame. Note that the centroid

movements aremuch smaller than those in (C) and

(D), suggesting that the detected nucleosome

movement is not derived from the global motion of

nuclei or chromosomes.

See also Figures S5, S6, and S7.
Figures 5C and 5D show the displacement distribution of

single nucleosomes in living interphase and mitotic cells. The

averaged displacements during 30 ms in the interphase chro-

matin and mitotic chromosomes were 51 and 59 nm, respec-

tively. Because the displacements of fluorescent beads on the

glass surface or the crosslinked nucleosomes in the glutaralde-

hyde-fixed cells were much smaller than those observed in living

cells (Figures 5E and 5F), the results indicate that the majority of

the displacement came frommovement of nucleosomes in living

cells, and not from drift in the microscopy system. To exclude
1650 Cell Reports 2, 1645–1656, December 27, 2012 ª2012 The Authors
further the possibility that the detected

movement was derived from global

motion of the nuclei or chromosomes,

the movements of the centroid for nucle-

osomes were measured and plotted

(Figures 5G and 5H). Because these

values were much lower than the move-

ments of individual nucleosomes in living

cells (Figures 5C and 5D), we conclude

that the observed displacement is due

to local fluctuation of nucleosomes in

living cells. In addition to the measure-

ments using DM cells, we found that

HeLa cells expressing a low level of

PA-GFP-H4 also showed considerable

nucleosome mobility (Figure S6), which
suggests that local nucleosome movement in mammalian cells

is a general phenomenon.

Local Nucleosome Fluctuation Is a Restricted
Movement
To further analyze local nucleosome movement in DM cells,

the MSD values (mm2) of the nucleosomes in the interphase

chromatin and mitotic chromosomes were plotted (Figure 6).

The plots fitted well with the exponential equation MSD =

0.021t0.37 for interphase chromatin and with MSD = 0.018t0.31



Figure 6. Plots of theMSDs of SingleNucleosomes from0 to 0.18 s in
Interphase Chromatin and Mitotic Chromosomes

Fluorescent bead data (Figure 5E) were used as the background. The plots

were fitted as an anomalous diffusion, suggesting that the nucleosome

movement supports a restricted diffusion model.

See also Figures S5, S6, and S7.
for mitotic chromosomes, respectively (Figure 6). The MSD

values increased rapidly, and the slope decreased over time,

supporting the restricted nucleosome movement model (see

Discussion).

Formaldehyde-Fixed Cells Show Considerable
Nucleosome Mobility
Whenwe fixed the cells with formaldehyde, which less frequently

crosslinks the same amino acid residues (predominantly arginine

and lysine) than glutaraldehyde (Griffiths et al., 1993), we found

that the cells still showed considerable nucleosome mobility

(Figure S7). This result implies that the local nucleosome move-

ment is caused by Brownian motion.

Inhibition of Local Nucleosome Dynamics Impairs
Chromatin Accessibility in Dense Chromatin Regions
Wenext examined whether local dynamics are required for chro-

matin accessibility or targeting in the dense chromatin regions.

For this purpose, we used condensin immunostaining (Hirano,

2005) as a probe for dense chromatin regions. Condensin local-

izes inside mitotic chromosomes like axes (Hirano, 2005). The

immunostaining signals demonstrated that the antibodies

(150 kDa, >15 nm) (Sandin et al., 2004) target the condensin
Cell Re
inside the chromosomes (Figure 7A). We detected antibody

signals in the chromosome axes of unfixed and formaldehyde-

fixed cells, although much less staining was observed in the

glutaraldehyde-fixed cells (Figures 7B and 7C).We also obtained

a similar result using the H4K8-acetyl antibody (Figure 7D).

These results show that tight crosslinking of nucleosomes

blocks antibody accessibility and targeting. Consistently, we

observed local nucleosome fluctuation both in living cells and

formaldehyde-fixed cells (Figures 5C, 5D, and S7A), but not in

glutaraldehyde-fixed cells (Figure 5F). Because we readily de-

tected the antibody signals in the glutaraldehyde-fixed cell

lysates by western blotting (Figure 7E), glutaraldehyde was

unlikely to have changed the antibody-epitope(s) and prevented

antibody access. This finding supports the idea that local nucle-

osome movement is important for chromatin accessibility and

targeting in dense chromatin regions.

DISCUSSION

We used a combined in vivo/in silico strategy to study chromatin

fluctuations, involving FCSmeasurements in the chromatin envi-

ronment, reconstruction of chromatin environment using Monte

Carlo computer simulations, and direct imaging of single-nucle-

osome dynamics. The combined approach demonstrated that

nucleosome fluctuation facilitates chromatin accessibility in

living mammalian cells. Notably, nucleosome fluctuation affects

condensed chromatin environments as well as rather dilute envi-

ronments, such as interphase chromatin.

It is reasonable to discuss the consistency between the in vivo/

in silico experiments. Single-nucleosome imaging indicated

a restricted movement of the nucleosome. This implies that

nucleosomes can move freely and rapidly in certain restricted

areas, which agreeswith the fact that linker DNA connects nucle-

osomes to one another. We mimicked this situation using the

‘‘dog on a leash’’ model in our simulations. The ‘‘leash’’ restricts

the movement of the 10 nm spheres (nucleosomes). The simula-

tion results suggested that 10–20 nm fluctuations of 10 nm

spheres (nucleosomes) drastically increases the mobility of

the 13 nm spheres (EGFP pentamers) in the environment. The

10–20 nm leash length seems to be reasonable because normal

linker DNA is 20–60 bp long, corresponding to a distance of

6.6–20.4 nm (0.33 nm/bp). In the simulation model, to complete

the 20 nmmovement, the 10 nm spheres (nucleosomes) required

an average of 8.21 ms. According to the formula (MSD =

0.018t0.31) from the single-nucleosome imaging, the nucleosome

moves 21.8 nm in 8.21 ms, revealing consistency between the

simulation and single-nucleosome imaging results.

Recent studies, including ours, have proposed that interphase

and mitotic chromatin are locally indistinguishable (Maeshima

et al., 2010b; Joti et al., 2012; Bouchet-Marquis et al., 2006;

Cremer et al., 2012). In the interphase nuclei, numerous compact

chromatin domains, such as chromatin liquid drops, are already

formed (Maeshima et al., 2010b; Joti et al., 2012). This is in

good agreement with our finding of no significant differences in

protein mobility or local nucleosome dynamics between inter-

phase and mitotic chromatin. This is also consistent with the

findings of the Langowski and Ellenberg groups, showing that

dense heterochromatin regions are readily accessible to
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Figure 7. Tight Crosslinking of Nucleo-

somes Blocks Antibody Accessibility and

Targeting

(A) Schematic representation of the experiment.

Protein accessibility and targeting to the chro-

matin were examined by immunostaining with

anti-CAP-H2 monoclonal antibody (CAP-H2 is

a condensin II component).

(B) Signals are detected in the nonfixed and

formaldehyde-fixed chromosomes (left and center

columns), but not in the glutaraldehyde-fixed

chromosomes (right column). Note that the diam-

eter (molecular mass) of the antibodies is �15 nm

(�150 kDa).

(C) Intensities of the axial signals (n = 104). The

intensities of the glutaraldehyde-fixed chromo-

somes are significantly lower than those of the

other samples. Local nucleosome fluctuation was

evident in living cells (Figures 5C and 5D) and

formaldehyde-fixed cells (Figure S7A), but not in

glutaraldehyde-fixed cells (Figure 5F). Thus, the

mitotic chromatin in formaldehyde-fixed cells and

nonfixed cells has similar accessibility to diffusing

proteins, although glutaraldehyde-fixed cells do

not (Figure 5F).

(D) Immunostaining using the H4K8-acetyl anti-

body. Similar results to those shown in (B) were

obtained.

(E) Detection of CAP-H2 signals by western blot-

ting of cell lysates, which were fixed on the

membrane using glutaraldehyde. Increasing

quantities of total-cell lysates of normal DM cells

were loaded into lanes 1–3. The CAP-H2 signal

values after background subtraction are shown at

the bottom. Note that glutaraldehyde did not

change the antibody-epitope(s) in the CAP-H2 of

the condensin complex.

See also Figure S7.
diffusing proteins (Weidemann et al., 2003; Dross et al., 2009;

Bancaud et al., 2009).

The compaction status of chromatin has thus far been dis-

cussed in terms of average pore size, whereby more compact

chromatin has a smaller pore size and vice versa (Görisch

et al., 2005; for review, see Wachsmuth et al., 2008). However,

as Wedemeier et al. pointed out previously (Wedemeier et al.,

2009a, 2009b), this model cannot explain why the condensin

complex (�600 kDa) (Gerlich et al., 2006) and topoisomerase

IIa (�340 kDa in dimer form) (Tavormina et al., 2002), which are

comparable in size or larger than nucleosomes, show consider-

able mobility inside compact chromosomes (estimated pore

size,�10 nm). The globular head domain of condensin is as large

as 21 nm (Anderson et al., 2002). Local nucleosome dynamics

can overcome this problem because constant local movements

and rearrangements of nucleosomes allow large protein com-

plexes to move around inside chromosomes. Consistent with

this notion, our simulations show that spheres of 21 nm can

move freely in 0.5 mM of fluctuating 10 nm spheres (nucleo-

somes). In good agreement with our findings, lattice simulations

of the polymer chain performed by the Langowski group (Wede-
1652 Cell Reports 2, 1645–1656, December 27, 2012 ª2012 The Aut
meier et al., 2009b; Fritsch and Langowski, 2011) suggested that

a dynamic polymer network facilitates movement of large parti-

cles. In their simulations, they modeled interphase cell nuclei,

which exist in rather dilute environments (Wedemeier et al.,

2009b; Fritsch and Langowski, 2011), whereas we focused on

more condensed chromatin environments and observed more

dramatic effects.

Previous studies on chromatin dynamics have employed very

large regions, such as the LacO array that encompasses 20–50

nucleosomes (Straight et al., 1996; Belmont et al., 1999; Heun

et al., 2001; Vazquez et al., 2001). When the movement of such

regions in living mammalian cells was measured by monitoring

movement of the GFP-LacI signal bound to the LacO array

(Chubb et al., 2002; Levi et al., 2005), the reported mobility

of the GFP-LacI signal was ATP dependent and very slow at

�1 3 10�4 mm2/s. Meanwhile, the local nucleosome movement

we identified in the present study could be very rapid in a short

time period: the apparent D values of the nucleosomes at

0–30 ms were at least �0.032 mm2/s (interphase) and

0.034 mm2/s (mitotic chromosomes). These values are roughly

100-fold higher than theDs of GFP-LacI signals, which represent
hors



rather large chromatin fiber regions. Thus, local nucleosome

movement is distinct from that observed with these large chro-

matin fibers.

Recently, we suggested a polymer melt-like structure that is

an irregular folding of nucleosome fibers without a 30 nm chro-

matin structure (Maeshima et al., 2010a; Nishino et al., 2012;

Joti et al., 2012). This melt-like structure implies that the nucleo-

some fibers might be constantly moving and rearranging at the

local level. The single-nucleosome imaging in the present study

demonstrated such local nucleosome dynamics. Notably, the

mean nucleosome movement for 30 ms (51 nm in the x-y plane

in interphase chromatin; 59 nm in the x-y plane in mitotic chro-

mosomes) was significantly longer than 30 nm. This finding

also provides evidence that there are almost no 30 nm chromatin

fibers in the majority of cells.

The local nucleosome dynamics of the polymer melt-like

structure facilitates protein mobility and chromatin accessibility.

This is important for many biological processes. For example,

because the large protein complexes condensin and topoisom-

erase IIa are essential for the chromosome assembly process

(for review, see Losada and Hirano, 2005; Maeshima and Eltsov,

2008), local nucleosome dynamics may contribute to their

functions in the structural maintenance of chromosomes. In

addition, upon scanning genome information, the dynamic local

movement of nucleosomes can facilitate the movement of

transcription complexes and their targeting to specific DNA

sites. This advantage would also be true for many other ‘‘target

searching’’ biological processes, such as DNA repair, replica-

tion, and recombination. Regulation of local chromatin

dynamics, possibly by histone modification and/or specific

proteins, would be an important aspect in the regulation of

such biological processes.

EXPERIMENTAL PROCEDURES

FCS Measurement and Quantitative Analysis

Live-cell imaging was performed using an LSM510 confocal laser microscope

(Carl Zeiss, Germany). LSM observations were all performed at 25�C. EGFPn

(n = 1, 3, or 5) was excited at 488 nm with a CW Ar+ laser through a water-

immersion objective lens (C-Apochromat, 403, 1.2 NA; Carl Zeiss). H2B-

mRFP1 was imaged using a 543 nm laser light. To avoid bleed-through effects

in double-scanning experiments, EGFP and mRFP1 were scanned indepen-

dently in a multitracking mode.

FCSmeasurements were all performed at 25�Con aConfoCor 2 (Carl Zeiss),

as described previously (Pack et al., 2006). Excitation of EGFP was carried out

at 488 nm (under 6.3 mW) by adjusting the acousto-optical tunable filter (AOTF)

to the minimum level. All autocorrelation functions were measured for 10 s five

times or fewer, at 2 s intervals, because the mitotic chromosome moves very

slowly during the mitotic process, causing nonstationary slow fluorescent

fluctuations during long measurement periods. FCS measurements of the

proteins in living cells and data analysis were conducted as described previ-

ously (Pack et al., 2006). Briefly, to obtain the diffusion time, the fluorescence

autocorrelation curve functions (FAFs; G(t)) of the measurements were fitted

by the following one-component model with or without a triplet term:

GðtÞ= 1+
1

N

�
1

1+ t=tD

� 
1

1+ ð1=sÞ2ðt=tDÞ

!1
2

;

where N is the number of molecules in detection volume, tD is correlation time,

w and z are the width and axial length of the detection volume, respectively,

and s is the structure parameter (z/w).
Cell Re
Diffusion times show the following relationship to the D:

tD =w2=4D:

TheD of EGFP (t EGFP) was calculated from the reported value ofD of control

Rho6G (D Rh6G = 280 mm2/s), and the measured values of the diffusion times of

Rh6G (t Rh6G) and EGFP (D EGFP), as follows:

DEGFP

DRh6G

=
tRh6G
tEGFP

:

Note that all FAFs from the FCS measurements under our conditions were

well fitted by the one-component model (Figure S2; see figure legend for

details) (Pack et al., 2006). For the oligomeric EGFP molecules (monomer to

pentamer) in the cells, the autocorrelation function can be fitted by the two-

component model or anomalous diffusion model. Although we performed

such an analysis (Pack et al., 2006), the contribution of the slower component

might be small (approximately 5%). Therefore, we used the simple one-

component model to extract the main component of diffusion property. The

results of the fitting are shown in Figure S2.

Monte Carlo Simulation of Nucleosomes and EGFP Pentamers

All molecules were represented as hard spherical bodies. Diffusive motions of

the molecules were calculated using the Metropolis Monte Carlo method

without long-range potentials and hydrodynamic interactions (Morelli and

ten Wolde, 2008). The diameters and Ds of the nucleosomes (10 nm spheres)

and EGFP pentamers (13 nm spheres) used in the simulations were 10.3 nm

and 8.68 mm2/s, and 12.8 nm and 7.00 mm2/s, respectively. These values

were obtained as follows: the 10 nm sphere representing a nucleosome was

determined to have a volume equivalent to that of a nucleosome (Luger

et al., 1997). TheD of the 10 nm sphere was obtained using the Stokes-Einstein

relation based on the diameter and D of EGFP monomers measured in the

cytoplasm (3.80 nm and 23.5 mm2/s, respectively). The diameter of EGFP pen-

tamers was also obtained using the same relation from the D obtained by FCS

measurements.

Simulations were conducted in a cubic box of 149 nm with periodic bound-

aries. In total, 100 spheres of 13 nm (EGFP pentamers) and 200 or 1,000

spheres of 10 nm (nucleosomes; corresponding to 0.1 or 0.5mM, respectively)

were placed randomly. A simulation is conducted by repeating the following

step-by-step procedure: (1) for each particle, a displacement (Dr) is drawn

using pseudorandom numbers from the continuous probability density func-

tion (P(r;Dt) = exp[�jrj2/(4DDt)]/[8(pDDt)3/2]); (2) a putative position for the

particle (rnew = r + Dr) is computed, where r is the current position of the

particle; (3) whether the particle placed at the new putative position (rnew) over-

laps with any other particles is checked, and if it does, the move is rejected,

and the particle is placed back in the original position r; and (4) steps 1–3

are repeated for all particles in a random order that is newly determined in

every step. When all the particles are processed, the time for Dt is advanced,

and the series of procedures is restarted. Results were obtained by averaging

1,000 samples from ten independent trials. The simulation time step was 1 ns.

Similar results with a shorter time step (0.1 ns) confirmed the simulation

convergence. The ‘‘dog on a leash’’ model does not allow the 10 nm spheres

(nucleosomes) to displace more than a defined distance from their initial posi-

tions at t = 0 s; if such a displacement occurs, the move is rejected in step 3

above. Control simulation for single-sphere movement without molecular

crowding was performed to check the numerical algorithm and to verify that

the known Brownian motion of spheres is indeed recovered (Figure S3A).

Visualization of Single-Nucleosome Motion in Living Mammalian

Cells

A homemade optical setupwith a fluorescencemicroscope (TE 2000-E: Nikon)

(Tani et al., 2005) was used to observe the distribution of single PA-GFP-H4

molecules expressed in DM cells. Light from a 20 mW, 488 nm, diode-

pumped, solid-state laser was introduced into the microscope through an

optical path installed on a vibration insulation table. Two neutral density filters

and an electromagnetic shutter were placed in the optical path. Through an

objective lens (1003PlanApo TIRF, NA 1.49; Nikon), DMcells grown on a glass

coverslip were exposed to the excitation light. The incident angle of the laser
ports 2, 1645–1656, December 27, 2012 ª2012 The Authors 1653



beam to the specimen plane was chosen so as to obtain a highly inclined pla-

ne illumination (HILO system; Tokunaga et al., 2008). Collected fluorescence

from the cells was focused on the electron-multiplied CCD camera (Andor

Technology, UK). The observation stage was kept at a constant 37�C. For
imaging of PA-GFP, interference filters were used. The length of a side of

a single pixel corresponded to 40 nm on the specimen plane.

Subpixel accuracy positions of the PA-GFP dots were determined using the

image-processing software PolyParticleTracker (Rogers et al., 2007). The

accuracy for determining the position of fluorescent dots was estimated using

the FIONAmethod (Thompson et al., 2002; Yildiz et al., 2003; Ober et al., 2004).

With this procedure, the trajectory of each fluorescent dot was obtained. We

calculated the displacement and the MSD of fluorescent nucleosomes from

the tracking data (857 points from 8 cells in interphase, 844 points from 12 cells

in mitosis, 37 points from 8 cells fixed with 2% glutaraldehyde, and 100 points

from fluorescence beads). The originally calculated MSD was in two dimen-

sions. To obtain the 3D value, the two-dimensional value was multiplied by

1.5 (4Dt / 6Dt). Using KaleidaGraph (Synergy Software, USA), histograms

of the displacement were prepared.

PA-GFP-histone H4 has some flexible regions, including the linker and

histone tail, which is maximally 50 amino acid residues, corresponding to

a length of �17 nm. We observed by FCS rapid movement of free GFP in

the chromosomes at 15 mm2/s. If PA-GFP is rapidly mobile within a restricted

area, like a ‘‘dog on a leash,’’ we consider that the effect of the flexible region

on the nucleosome position determination is negligible.
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